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ABS TRACT

The paper is concerned with the asymptot ic  behavior as t -. ~~~ of

solutions u(x , t) of u~ - u - f (u )  = 0 (x (— 
~~~, ‘~ )) in the case

f (O)  = f ( i )  = 0 , f ’ ( O )  < 0 , f ’ ( i )  < 0 .  Commonly ,  a travelling front solution

u = U(x - Ct), U (~-~~) = 0 . U(~~) 1 , exists .  The following types of global

stabil i ty resul ts  or fronts and various combinat ions of them are given:

1. Let u(x , 0) u 0(x) sa t i s fy  0 < u0 
< 1. Let a _ u r n  sup u0

(x) ,
x - ,.-~~

a + 
= lim inf u0 ( x). Then u approache s a translate of U uni formly in X

and exponent ially in t ime , if a is not too far from 0 , and a ÷ 
not too

V V far from 1.

2. Suppose f f (u)du  > 0. If a _ and a + 
are not too far from 0 ,

but u 0 
exceeds a certain threshhold level for a suff icient ly  large x-interval ,

then u approaches a pair of diverging travelling fronts .

3. Under certain circumstance s, u approaches a “stacked”

combination of  wave fronts , with differing ranges .
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waves , travelling fronts , wave fronts , asymptotic behavior
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THE APPROACH OF SOLUTIONS OF NONLINEAR DIFFUSION

EQUATIONS TO TRAVE LLING FRONT SOLUTIONS

Paul C. Fife and J . B. McLeod

1. Introduction ACt ESS~~N for

V NTIS ~~ctic
This paper is concerned with the pure initial value problem for DDC B.. Se.~o~

NANNOJ ~C1~
the nonlinear diffusion equation JU STI ~ CA~I(~!1 

-

( 1 . 1)  u — u — f(u) = 0 ( — 0 0 < x < 0 0, t>O) ,t XX O~STR?R~J1!ON ,’IYA~’ ~~ ITT ‘~

the initial value being, say, 
- V V

( 1.2 )  u(x , O) = q’(x) ( - o o < x  < oo ) . /9
One of the central questions of interest for this problem is the behavior

as t -. 00 of the solution u(x , t) , and in particular one would like to

determine under what circumstances it does (or does not) tend to a

travelling front solution. This problem has attracted an increasing amount

of attention in recent years , and some of this work is given in refe rences

[ 1 — 5 , 11 —17 , 21 , 23] . We mention in particular the classic paper of

Kolmogorov , Petrovskii and Piskunov [16 1,  the extensions by Kanel’ [14 , 15 ],

• and the more recent work of Aronson and Weinberger [ i , 2 ] .  These papers

assume , as do we , that f € C’ with f(O ) = f ( i )  = 0, so that u 0

and u 1 are particular solutions of ( 1.  i ) .  A travelling front is a

solution of (1.  i)  of the form u = U(x - Ct) for some c (the velocity),

Sponsored In part by the United States Army under Contract No. DAAGZ9-7 5-
V C-0024 , in part by the National Science Foundation under Grant MPS-74-

06835-AO l , and In part by a Science Research Council British Research
Fellowship.
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with the limits U (± 00 ) existing and unequal , and for definiteness we

take U(-00) = 0 and U(+00) = 1. With the above assumptions on f,

it is a standard result that if c is piecewise continuous and 0 < c~’(x) ~ 1 ,

then there exists one and only one bounded classical solution u(x , t)

to (1. 1-2),  and 0 < u(x , t) < 1 for all x , t. We shall always make

these assumptions on p and f , and shall be concerned only with

this unique bounded solution .

A particular case of (1 .1 )  was introduced by Fisher [ 9 ] to model

the spread of advantageous genetic traits in a population . A mathematical

treatment was given in [16], assuming

f(u) >0 for u E (0,1), f’(O) >0 , f’(l) <0 , f’(u)~~~f’(0)

It is shown there that if the initial function ç~ Is chosen so that

0 for x c 0, q~(x) 1 for x > 0

then it is indeed true in a certain sense that the solution of the initial

value problem “tends ” to a travelling front . Specifically, there exists

a travelling front U(x - ct) and a function i.ji(t) such that, as t —
~~

(1. 3) u(x , t) - U(x - Ct - q ( t ) )  - 0 uniformly in x ,

and ~‘(t) 
-, 0. Because it is not true that 4i(t) tends to a finite limit

as t -. 00 , u does not approach a travelling front uniformly in x; what does

happen, however , and what (1. 3) implies , Is that the x-prof ile of the function

u (monotone in x for each t) approaches that of the travelling front U.

In [ 14], Kanel’ prove s similar convergence results for the case

f(u)~~ 0 for u E [0,aJ, a <I ,

1(u) > 0 for u E (a , 1)

—2—
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1
He also assumes f’(l) < 0, f  f(u)du > 0. This set of conditions

0

includes the equation for combustion of certain gases , in which f( u) E 0

for u ~ (O , a) , and also the important case in which f(u) < 0  in (0 , a).

V The latter case , when I has exactly one intermediate zero in

~J , ~~i , is called the ‘ heterozygote inferior ” case by Aronson and

Weinberger [1] ,  ref erence being made to the genetical context envisaged

V by Fisher . But it is relevant in other contexts besides Fisher ’s. It serves

to describe signal propagation along bistable transmission lines [ 1 9 ] ,

and is a degenerate case of the FttzHugh-Nagumo model for the propagation

of nerve pulses. See also [18] . Finally, this case is also very relevant

to models recently devised by Fife in connection with pattern formation

and wave propagation in a diffusing and reacting medium [6 , 7 ] .  This

bistable case of Fisher ’s equation , and its generalizations , are the

principal objects of study in the present paper.

In his paper [14],  Kanel ’ allows q’ to be more general than a

step function (as in [16]),  though he still requires it to be either monotone

and 0 or 1 outside a finite interval, or a perturbation of a travelling

front. The convergence statement is stronger than that in [16], in that

= constant.

Aronson and Weinberger [1] introduce also the “heterozygote-

superior ” case

f(u) > 0 for u (0 , a), f(u) < 0 in (a , 1), f ’(O ) > 0 , f ’( l ) > 0

-~~~~ - 

~~~~~~~ .~ _ _ _ _ _



V~V. ~~~~~~~~~~~~ 
_ _ V ~~~ ~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V ~~=•~V f••!~!~~ 

__ _~~~V_ ~ V__ V~V• V_~_ • ~~~~

In relation to the travelling front question , they show that in

V each case mentioned above , there is a number c* > 0 wIth the

property that every nonzero disturbance of the state u 0 which is

initially con fined to a half-line x < x 0 (so that q(x)  = 0 for x ~ x0)

and which exceeds some threshhold value propagates with an asympto tic

speed c*, in the following sense:

lim u(x + ct , t) = 0 for each x and each c > c~
t —.. 00

and lim u(x + Ct , t) ~ a for each x and each c

with O < c < c *.

Rothe[2I], Hoppensteadt [l2J, McKean [l7J, Stokes [23], and

Kametaka [13] have recently taken another look ‘it the case f(u )  > 0 for

u € (0 , 1) . Stokes , taking q’ to be a step function or a sufficiently steep

V : monotone function, improves the convergence result in [16) by showing

V 
that ~ = constant in the case 4f ’( O)  < ( c *) 2~ Rothe, Hoppensteadt, and

Kametaka show, among other things, that by prescribing the precise

asymptotic (in x) behavior of ç ahead of the front , one can obtain

uniform convergence to travelling fronts . McKean applies probabalistic

methods to the case f(u )  = u(l - u) to obtain similar results .

Chueh [4] has treated the case when f is allowed to depend on

u~, and a travelling front represented by a saddle-saddle phase plane

trajectory exists. He obtains convergence of the profile of u to that

of the front.

—4-
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Our main object in the present paper is to show that under minimal

assumptions on ~ ‘, when f ’( O) < 0 , f’ (l ) < 0 , the solution converges

V 

uniformly to one of various types of travelling front configurations. A

later paper will present convergence results for more general functions f.

Typical results obtained here for the bistable case are the following .

~~~~~~~. f e C1[O ,lJ satisfy, for some a € (0,1),

f(u ) < 0 ~~ u (0 , a), f(u) > 0 in (a , I), f’(O) < 0, f’(l) < 0

~y [ 14 1 ,  there exists a unique (except for trans 1ationj~ monotone travelling

front U(x - Ct) . ~~ppose that 0 ~ ~(x) ~ 1 for all x , with

lim inf q~(x) > a , lim sup ~(x) < a
x-. 00 x-#-00

r
i Then for some x , the solution of the initial value problem approaches

U(x - ct - x )  uniformly in x as t — oo . Further, c 0 accord~~~

• 
~~~~

. f f(u)du ~ 0, and the rate at which the limit is approached is

e~ponential.

On the other hand. suppose that ~‘ is of bounded supp ort (or mo~~

generally, that lim sup q~(x) < a ) ,  and that q’(x) > a + ri for some r~ > 0
X — . ± 0 0  1

and l x i  < L .  If L is large enough. depending on 1, ~~~~~~~ f f(u)du > 0 ,
0

then the solution develops (uniformly in x) into a pair of diverging V

travelling fronts

U ( x _ c t - x 0) + U ( - x ct X 1) 1 .

I

p—.. ~~~~~~~~~~~~~~~~~ L~~=~_i~L ~~~~~~~~~~~~~~~~~~~ 
V
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We also treat cases where f has more than one internal zero .

To each triple of adjacent zero s of f with properties analogous to the

zeros (0 , a , 1) in the heterozygote inferior case , there of course

corresponds a travelling front with characteristic speed and characteristi c

limits at ± 00~~ For simplicity consider the case of two adj acent triple s

of thi s type (thus fi ve zeros in all) , and a solution of (1.1) with range

equal to the combined ranges of the two travelling fronts . Let c0, c1

be the two velocities, ordered by increasing u. If c0 <c 1, we can

show that the solution will tend to split into two separate travelling

fronts , becoming very flat for u near the center zero of the five , and

that there exists no single travelling front with range f rom the first to

r
• the fi fth zero . If c0 > c1, however , there exists a unique such

travelling front , and this corresponds to the fact that in this case a

splitting as described above would be conceptually impossible. The

• solution will develop into the unique travelling front. The case c0 = c1 is

one which we are unable to discuss by the methods of the present paper.

The principal tools used throughout the paper are a priori estimate s

and comparison theorems for parabolic equations. It may be well to

state here the particular results of this type that we shall need. The

indicated Schauder estimates can be found , for example , in [10 , Thm . 4

of Chapter 7 , and Thm . 5 of Chapter 3] ,  and the comparison theorems

in [zo ] with extensions in [ 1] .

Let Q b e a  rectangle [x 0 , x 1] x [ t 0, t1] In the (x , t) pl ane

with t0 > 0 and with any of the x0, x1, t 1 
either finite or inf ini te .

—6—
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Let the sides be of length > 2 . Corresponding to Q, let Q’ be

the smaller rectangle [x 0 + l,x1 
- 1] )( [t ~ + l,t1]. 

For a function u with

derivative s appearing in (1. 1) defined and continuous in Q, let

Q Q _ Q Q
u sup u(x , t) u 1 = u 0 + u 0

(x , t ) E Q  
x

Q Q Q Q
u + u ÷ u

2 1 xx 0 t O

Consequences of interior Schauder estimates: ~~~ u bea solution of

(1 .1) in Q. Then for some C > 0 , independent of u and Q, I
( 1.4 ) t u i ~~ < C (  f ° u~~ + ~u i ~~) ,

(l . s) IuI~~~~C ( I f o u I ~~+ I u I ~~)~~~C( I f’ o u I ~~l u l ~~ + lui~~) ,

(1. 6) the moduli of continuity of u and u~ 
in Q’ are subject

Q Q
to a bound depending only on f • u 1 and u

An immediate consequence of the above is that the uniform boundedness

of u in the half-space {t > 0) implies that of u , u~~ , and u
~ 

in

the half-space {t > 1). We shall use this boundedness property throughout

the paper without further mention.

•. The comparison arguments we use are quite standard . Let N be

the nonlinear di fferential operator , acting on functions of x and t ,

defined by

(1.7) Nu u — u - cu - 1(u)
t xx

—7—
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Consider the init ial  value problem

( 1.  8) Nu = 0 for (x , t) E (— 00~ 00 ) x (0 , 00

(1.9) u(x,O) =

A reg ular subsolution ~~x, t) of ( 1 . 8—9) is a function defined

and continuous in (- 00~ 00) x [0 , T), T < 00~~ with derivatives appearing

in ( 1 . 7 )  continuous in (— 00~ 00) x (0 , T), and satisfyi ng

Nu < 0 in (_ oo , oo ) X (0 , T), u < 4i for t = 0

A subsolutio n is defined to be a function of the form

u(x , t) = Max {~ 1 (x , t), . . . , ;(x , t) }

for some set {~~~ } of regular subsolutions with common dom a ins .

Supersolutions are defined analogously.

Comparison Theorem: Let u be a subsolution, and ~.i a su persolution,

of ( i . 8~~ ). Then u(x , t) ~ u(x , t ) in ( _ x , oo) x [ 0 , T).

In this theorem either ~ or u could, of course, be an exact

solution.
V 

- 
The plan of the paper is as follows. In § 2, we review the existence

and uniqueness of travelling front solutions , primarily for the case where

f(u)  < 0 for u sufficiently small and positive and 1(u) > 0 for u

suff ic ient l y  near 1. Many, but no t all , of the results covere d in this

section are known and have appeared previously.

In § 3, we state our precise results on uniform convergence. These

~~ 1 are proved in § 4-6.

Most of the results of the present paper were announced in [ 8 ] .

—8-
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2. Existence and uniqueness of travelling fronts

We assume throughout that f t  C1[O , i }  and f(0)  1( 1) = 0 .

We first make the point that any travelling front with range [0 , i ]  is

necessarily monotonic .

Lemma 2. 1: Any solution u = U(x — ct) of ( 1 .  i) with U € [0 , 1] ,

U( — 00 ) = 0 , U(°° ) = 1 , necessarily satisfies U’(z) > 0 for finite z = x — Ct .

Proof: Such a function U(z) satisfies the ordinary differential  equation

(2. 1) U’ + cU’ + f( U) = 0

and so corresponds to a trajectory in the (U , P) phase plane of the system

(2.2) dz

dP
(2.3) = —cP — f( U)

connecting the stationary points (0 , 0 )  and ( 1 , 0) .  Thi s trajectory is a

V 
simple curve , since the differential equation (2 . 1)  is of the second order ,

and it has the properties that it stays in the strip 0 < U < 1 , and is directed

toward the right for P> 0, and toward the left for P < 0. Any simple

curve with these properties must be such that P> 0 throughout its

length. If it contains a point (U0,O) with U0 (0, 1), then there

would exist a travelling front U(z) such that U (0 ) = U0, U’(O) = 0 .

Then U ”(O ) � 0 , for otherwise by uniqueness of solutions of (2 .  i ) ,

U U0 . This means that P would change sign as the point (U 0, 0)

i s crossed , which we have seen to be impossible. Therefore P = U ’ > 0

except at the endpoints. This complete s the proof.

—9—
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V 
In view of Lemma 2.  1 , to any travelling front with range [ 0 , 1 ]

there corresponds a function P(U )  defined for U t [0 , 1 1 ,  positive

in (0 , i ) ,  zero at U = 0 or 1 , representing the derivative

From (2 .  1) , we see that  it sa t i s f ies  the equation

( 2 . 4 )  p ’ + $ = -c

or , elimin ating c ,

( 2 . 5 )  P’ 1 + ($) = 0

where c is the corresponding wave speed . Moreover P has to sa t i s fy

the boundary conditions

(2.6) P(0) = P(l )=0.

Conversely, given such a function P satisfying (2 .  4) , ( 2 .  6) , we

may obtain a corresponding solution of (2 .  i)  by integrating

U’(z) = P( U), U(0)  =

This eq uation may be solve d for z in an interval (z 0, z 1 ) to obtain

a monotone solution with lim U(z )  = 0 , li m U(z)  = 1. To show that
zLz 0 ztz 1

u(x , t) = U(x - Ct) is a travelling front as we have defined it , we have

only to verify that z0 = —00 =

V 

Since f(0 )  = 0 , we have that 1( U ) I < ~3U for some 3. Let ‘~

be a positive number such that - c < ‘y. Let S be the line P = ‘yU

in the (U , P) plane. If the graph of the given solution P( U) touches S

—10—
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at a point in the first quadrant distinct from the origin , then at that

point , i ’  = -c - - c + < y, so that the trajectory immediately

goes below S. This implies that for some 5 > 0 , either

(i) P( U) > ‘y U for U (0 , 5)

~~i ( i i )  P( U) < -y U for U (0 , 5)

In the former case we have , from (2. 4),

P ’(U)  = -c - < - c + < ~y, so that P( U) < ‘y U

Therefore (ii) must hold. But then

1/2 1/2r du 1 r du
-z = J  > J  — = 0 0 , so that z ~~ OO .

0 0 P(u) 
~1 O u 0

Similarly, z1 
=

Hence if f t  C1[0 , l ] ,  f (0)  = f( l)  = 0 , there is a one—one

correspondence between travelling fronts (modul6 shift s in the independent

variable z) and solutions of (2 .  4) , (2 .  6), positive in (0 , 1).

The form of the equation (2 .  4) makes it clear that for every solution—

pair (P , c), there is a second pair (-P , -c), so that our theory applies

to monotone decreasing solutions of (2 .  1) as well.

Integration of (2.4) (after multiplication by P) yields

1 1
c f  P(u)du = - f  f(u)du

O 0

so th a t , for a positive solution of (2 .4 -6) ,  we have

1

V 

-

~ ( 2 . 7 )  c~~~0 according as f f(u)du ~~~O
0

— 1 1—



( For a negative solution , the sign of c is the same as that of f f d u . )
0

Lemma 2.2 (Kanel’ [14 J): ~~j  I € C1
[O ,l] satisfy f(0) = 0 and

f(u )  K 0 for small  positi ve u . Let P . ( U ) ,  I = 1, 2 , be solutions of

( 2 . 4 )  with corresponding speeds c~ . Assume F . ( O )  0 , P .(U )  > 0

i~ U (0 , U 0
).  Then for each U (0 , U0 ],

P1(U) -~~ P2
(U)  according as c1 c2 -

Proof: From ( 2 . 4 ) ,  we have -

- P~ - p
i
p (P 1 

- P 2
) = -(c

1 
- c2

)

so that

d F(U)  
= -(c

1 
- c2 ) exp f (-f( t )/P 1(t ) P2 (t))d t

U0/2

where

U
F(U) = (P 1 

- P2 ) exp f (-f( t )/P 1(t)P 2 (t) )d t
U0/z

As U 1 0 , we have F(U) — 0 since P1 
- P

2 
-. 0 and the exponential

factor is bounded as U 1 0 because of the sign of 1. If c1 = c2, F(U) ,

bei ng constant , is zero , so that P1 P 2 . But if C1 > c2, F is strictly

decreasing,  so that  P
1 

< P2 for U >  0.

In the remainder of this section , we shall usual ly  assume that I

satisfies the following conditions : 
V

-12-
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f t  C1[0 , l] ,  with f(O) = 1(1) = 0

(2. 8) f(u) < 0 for u sufficiently small

L f (u)  > 0 for u sufficiently near I

Corollary 2. 3: Let f sati s fy (2. 8). Then there exists at most one solution

to (2. 5—6)~~positive in (0,1).

Proo f: Suppose there exist two; let them be those in Lemma 2. 2 , wherein

U0 = 1. The fact that P1
(l) = P2(l) = 0 implies , by that lemma , that

c1 
= c2, and in turn that P1 

P2 .
V 

- 
Theore m 2 .4 :  Let f t  C1[0 , l ] ,  and f(0) = f(l) = 0. For some a- € (0 , 1),

~~ppose that one of the following assertions holds:

l
(a) f .~. O in (0 , a ); 1> 0  in (a , l); f f(u)du > 0 ;

~~ 1 0
1

(b) 1< 0  in (O , a); f > O  in (a , l); f f(u)du < 0
0

(c) f < 0 in (0 , a); f >  0 in (a , 1) -

Then there exists one and (by C orollary 2 . 3 )  only one solution of

(2.  5— 6), positive in (0 , 1).

Remark: The theorem is in some sense best possible . For if we relax

the restriction

1f f (u)du >
0

• in case (a) and consider instead

- ‘ 1f f ( u ) d u = 0 ,
0

• — 13—
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with f = 0 in (0 , 1~), say , where 0 < ~3 < a , then the only possible

solution is , by ( 2 . 7 ) ,  a solution of (2.4) for which c = 0; and since

f = 0 in (0 , 1~), we have P = 0 in (0 , p) , which shows a positive

sol ution to be impossible.

Proof: This theore m (in case (a) )  was proved in [14], [i , Thm . 4 . 2 ]  and

[ 2 , Thm. 4 .1 ] .  Case (b) follows from case (a) by replacing U by I - U ,

and 1 by -f.  Case (c) for c � 0 follow s from the other two cases.

For c - 0 , ( 2 . 4 )  can be integrated , and the result is the required solution .

Our object now is to extend this existence theore m to a wider class of

fu nctions f , still retaining the hypothesis (2 .8 ) .  At the same time , we

shall consider the possibili ty of solutions of ( 2 . 4 )  with internal zeros , which

• repre sent phase-plane images of “stacked ” combinations of travelling fronts .

The following preliminary lerri inas will be needed.

Lemma 2. 5: j
~~ 

f c1[ 0 , 1] ~~fl]~ 
f( 0) = 0 , 1(1) = 0, and let

there exist a solution P0(U ) of (2 . 4 J~ positive on ( O , a),

with P0(0) = 0 and “velocity ’ c = c0 . Then for an’,~ c ~

there exists a solution P(U) ol ( 2 . 4 )  on (O , a) with P(0) = 0 ~~~

P(U) > P0(U) . There exists a maximal such solution, which we denote by

• ~~~~~~~ 
so that for any other solution P with the given c satisfying

P(0) = 0, and for U in the domain of P, we have P (U) ~ P( U) .

Moreover , P (U) dep~ends continuously on c for c < c 0 .

• Proof: We follow the construction used in [ 2 ] .  For v > 0 , c ~ c0, let

I~ (U)  be the solution of the regular initial value problem

— 14—
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P’ + $ + c  = 0 , P(o) = v

Clearly P (U) > P (U) for U € [0 , a ] .  Since P (U) is monotone
c,v 0

in v , P
~

(U) lim P
~~~

(U) exists and satisfies P
~

(U) �~ P0(U) .
S v l O

furthermor~ by the monotone 
convergence theorem , P satisfies (2.4), and

is the required solution. If P is another solution , clearly P > P
C c, v _ 

C

for all U wher e the latter is defined , and so passing to the limit , we

obtain that P is maximal. Its continuous dependence on c is proved
C

as in [2, Prop. 4.5].

In the following when we speak of a “travelling front over [a , ~3]

V with velocity c ’ we shall mean a solution of (2 .  4) with the given c,

positi ve in (a , p) and vanishing at a and p .

Lemma 2 . 6 :  Let f satisfy (2 .~~~~ For 0 < a  ~~. 13 <1, assume that

: , there exist travelling fronts over [0,1], [o ,a-], [p , l] ,  with

velocities c01, C0 ,  and c131 
respectively. Then necessarily

(2. 9) C
0a- 

> c01 > C
131

Proof: We apply Lemma 2. 2 with P1 the solution over [0 , 1], P2 the

solution over [o , a] ,  and = a. Since P2
(a) = 0 < P~

(0), we have that

c01 = C
1 

< C
2 

= c
~ a-

. The other inequality in ( 2 . 9 )  is proved in a similar fashion.

Theore m 2 .7 :  j~~ f t  Cl[0 , l] with 1(0) = f(1) = 0, and let there exIs,~~~

• travelling front ov~~ [0 , a] with velocity c~~, and one over [a, 11 with

- 
velocity c

1 
< C

0 
. Then there exists a travelling front over [0 , 1] with

velocity c01 satlsfyinq

V - C > c  > cOa 01 al

— 15—
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Remark: For this theorem to hold , it is not necessary that f sa t isfy

(2. 8). But i f  it does , the n Lemma 2. 6 shows the inequali ty c 1 < C
Oa

to be a necessary as well as a sufficient condition for the existence of

a travelling front over [0 , 1].

Proof: For all c < c~~ , let P (U) be the (maximal) solution of (2 .4 )

g uaranteed by Lemma 2. 5, and let g(c) = P (a), c < C
0a~ 

It is continuous

in c, and satisfies lim g(c) = 0.
V c t c ~Oa

By the symmetrical argument, for each c> c 1, there is a positive

so~~tion P (U) o f ( 2 . 4 )  satisfying P (i) = 0 , with h(c) = P (a )

continuous , and lim h(c) = 0. Hence there is a solution c = C 01
d c

a1

V of g(c) = h(c). For this value of c, P is the continuation of P ,

which i s there~~re the required travelling front over [0 , 1].

De finition: A closed interval I C [0 , 1] is called admissible if f

vanishes at the endpoints , f ~~. 0 near the left endpoint , f ~ 0 near

the right endpoint , and there exists a travelling front over I.

- 
- • Suppose we have given a decomposition of [0, 11 into nonoverlapping

m
adj acent admissible intervals [0 , 1] = U I ., ordered from left to

j = l

right (so that the right endpoint of I . is the left endpoint of I .+~
) . Let

{c . } be the associated velocities of the travelling fronts over the I . .

P~ f~nItion: Such a decomposition is called minimal if c~ is

nondecreasing in j :  c .~ 1 a c~.

—1 6—
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Theorem 2 . 8 :  If there exists a decomposition gf [0 , 1] into admissible

V 

intervals~ then there exists a unique minimal decomposition.

Remark: The signi ficance of minimal decompositions will be seen in Theorem 3. 3

and in a later paper. In fact , monotone solutions of (1.1) with range [0 , 1] will

split into a “stack” of travelling fronts , each with range in one of the

intervals of the minimal decomposition and with its distinctive

asymptotic speed , and (at least when the c , are distinct) spreading 
V

away from each other .

Proo f: The existence of a minimal decomposition is trivial. In fact , if

the original decomposition is not minimal , there will be two adjacent

intervals I~ and I~ , say, with associated -velocities sati s fying c1 > C
2

.

By Theorem 2 .7 , we may combine them into a single admissible interval.

V Thus proceeding in a finite number of steps (since each step reduces by one

the total number of intervals), we arrive at a minimal decomposition.

We now show that there cannot be two distinct minimal decomposi-

tions. Let two min imal decompositions be given. If they are distinct ,

there will be an interval of one , call it I , which overlaps at least two

: intervals of the other. Call the latter overlapping intervals Jq~
q

ordered from left to right , so that I C  ~~ and I f l  
~k �Ø ,  l < k ~~~q.

k = l

The interval I fl 
~l’ 

being a union of the original intervals , has a

n
minimal decomposition I fl j

1 
= U I~ , again ordering from left to right .

k = l

Let the velocities associated with I , 
~k’ and I~ be c , d k, and c~

—17—
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respectively. By Lemma 2. 6 , c~~> c and c’ < d1. By minimali ty ,

c’ < c ’ . Hence c < d  . A similar argument shows that c >  d . Hence
1 n  1 q

d1 > dq~ But this contradicts the minimality of the second decomposition ,

- and proves the theorem.

k 
V~~

I

— 18—
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V 3. Uniform convergence results

Beginning with this section , we take up the question of the

asym ptotic behavior as t — 00 of solutions of the initial value problem

( 1. ~-2 ) .  We deal with circumstances under which a solution approaches

tr m ’e l l inj  f ront , or a combi nation of fronts , uniformly in x and

:V rIentid lly in t as t -. 00~~ Conclusions to this effect, under minimal

assumptions on q’, can be made when the travelling front or fronts

concerned are over u-intervals at the endpoints of which f ’(u)  < 0. The

ba sic result is the following .

Theo rem 3.1: j~~ f t  C1[0 , l] sa t i s fy  1(0) = 1( 1) = 0, f ’( O) < 0 ,

f ’( l ) < O , f(u ) < 0  for 0 < u < a 0 , f ( u ) > O  ~~~ a1 < u < l , where

0 <  a
0 

a
1

< 1.
V 

Assume there exists a travelling front solution U of (1.1) with speed c.

L~~~ ~‘ satisfy O < q’ < l , and

(3 .1)  lim sup qr (x) < a 0, lim inf q~(x) > a1 .

X — ° O

Then for some constants z0, K , and ~~~, the last two ppsitive, V

the ~Vsolut ioI1 u(x , t ) of (1. 1—2 ) satisfies

( 3 . 2 )  lu (x ,t) - U(x - ct - z0 )l <Ke~~
t

Remark: It is clear from § 2 that the existence of a travelling front is by

no means guaran teed . However , in that section readily verifiable conditions

on f were given which ensure its existence. If I satisfies these

conditions , the existence assumption In the statement of Theorem 3.1

1

—19—
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may of course be omitted . A particularly important case is that of the

de gen erate Nag umo ’s equation , in which = a-1. A travelling front doe s

ex ist in  this  case.

Theorem 3.1 implies that a solution which vaguely resembles a

front at some initial time will develop uniformly into such a front as t —
“Vaguely resembles ” simply means that the solution is less than

far to the left, and greater than a1 far to the right. Of course, if the

• words “left” and “right” are interchanged in this statement , the sa m e

conclusion holds; the front will then face right rather than left , and will

travel in the opposite direction .

There are als o situations in which the solution will develop into

a pair of such fronts, moving in opposite directions . That is Lhe gist  of the

follow ing result .

Theorem 3. 2: Let f satisfy the hypotheses of Theorem 3. 1. and in

addition

(3. 3) f  f(u)du>0
0

Let ~~‘ satisfy 0 ~~ ~ .~~ 1, ~~~

(3.4’) lim sup ~(x) < a0, ~ (x) > a
1 ÷ r

~ 
for x l <L

x l
where ri and L are some positive numbers. Then if L is sufficientl y

large (depending on r~ ~~~~~~~ f) ,  we have for some constants x0, x1, K,

~ (the last two positive),

— 2 0 —
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(3.Sa) u(x,t) - U(x - ct -x
0
) l < K e~~

t
, x < 0 ,

(3 . sb) Iu(x, t) - U(-x - ct - x1) I <Ke Wt
, x > 0 .

Note that (3. 3) implies c <0. The intuitive meaning of (3.5)

is that the x-interval on which u is near the value 1 is finite and is

elongating in both directions, with speed cl . If the inequality in (3.  3)

is reversed, and appropriate changes in (3.4) are made, then an analogous

V convergence result is still obtained. In the latter case, the interval

on which u is near 0 will elongate . V

Finally, we consider the possibility of the solution developing

V into a combination of fronts with different , but adjacent , ra nges. As in

§ 2 , we call them a stacked combination of fronts , and for simplicity

V treat only the case when there are two of them . 
V

• Theorem 3.3: Let f(u.) = 0 and f’(u.) < 0, 1 = 1, 2 , 3, where

u
1 
<u

2 
<u

3
. Let there exist travelling fronts U1(x - c1t) and U 2 (x - c2 t)

with ranges (u 1, u 2 ) and (u 2, u 3) respectively. Assume c1 < c 2 .

Let a
1 

be the least zero of f greater than u1, and a
2 

the greatest

-. zero less than u 3 . Suppose u1 < ~(x) < u 3, and

V 

- ( 3 . 6 )  lim sup ~‘(x) < a 1, lim inf q~(x) > a 2
X - - Q O  X - ’ 0 0

Then there exist constants x1, x2, 
K, and w , the last two positive ,

such that

( 3 . 7 )  Iu(x ,t) - U
1(x - c

1
t - x1) - U 2(x - c2t 

- x
2

) + u2 1 < Ke~~~
t

—21—
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Note that (3 .7 )  implies , In particular , that

1’~’l 
for

iim u(pt,t) =~~ u2 
for c1 < 1 3 < c2 ,

for c2 < P .

— 2 2 —
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4. Proof of Theorem 3.1 (Beginning)

In this section we establish the uniform convergence of

u(x , t) - U(x - Ct - z0) to zero as t — oo , the exponential nature of

t1ii~ convergence being deferred to section 5.

~ever~i lemmas will be needed in the proofs of the theorems given

:~~~~ previclus s:~ct~on. Some arguments are easiest to give in term s

C’! d ~Tiuv ing Lc ~crdinate sys tem.  For purposes of Theorem 3.1, we set

z = x - ct , and write the solution of (1. 1-2) as

v(z, t) = u( x , t) = u(z + Ct , t)

V Our basic lemma in the following.

Lemma 4.1: Under the assumptions of Theorem 3.1, there exist constants

z1, z2, q0, and p. (the last two positive), such that

(4.1) U(z - z 1
) - q0e ~~~~~ v (z , t) < U(z - z 2 ) + q

0
~

_
~t

- 

V Proof: We prove only the left-hand inequality; the other is similar. The

function v satisfies

(4 . 2 a )  N [ v ]  v~ — 
~~~ 

— cv — 1(v) = 0 , z € (_oo , oo) , t > 0

( 4 . 2 b )  v(z , 0) = ~(z)

V Functions ~(t) and q(t) (q(t) positive) will be chosen so that

v(z, t) Max[0,U(z — ~(t ) )  — q(t ) ]

wi ll be a subsolutlon. V

First , let q0 > 0 
- 

be any number such that a 1 < 1  - q0 < lirn inf q ’(z).

Then take z * so that U ( z - z *) — q
0 
< q,(z) for all z. This is possible,

— 23—
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V for s u t f i c i e n t ly  large pos i t ive  z~~, by v i r tue  of ( 3 . 1 ) . Let

( [ f( u - q) - t~u ) J / q , q > 0
~~(u , q )  =~~

~ - f ’ ( u )  , q = 0 .

Then ~ is con t inuous  for q a 0 , and ~o: 0 < q < we h~~ie

< I - I — q < 1, so tha t  ~~( 1 , q) > 0 . Al~ ci~( 1 , 0) = - f ’ ( l )  > 0.

Thus for some p. > 0 , we have c~( l , q )  � 2 p. for 0 < q  < q 0 . By

• c o n t i n u i t y ,  there exis ts  a S > 0 such that  cL (u , q) ~ p. for 1 - S u ~ 1 ,

0 < q < q 0 . In this  range , we have

f ( u - q ) - f ( u ) > p . q .

V Setting f., = z - ~( t ) ,  and us ing  tri e fac t  that

( 4 . 3 )  U ” + cU ’ + 1 ( U )  0

we find that , if  ~ > 0 ,

- N[ v J  -~ -~~V ’( t ) U’( ~~~) 
- cU ’(~~) - q ’( t )  - U ( ~~) - f , U - q )

= -~~‘( t ) U ’ ( ~~) - q ’( t )  ÷ f ( U )  - f ( U  - q)

- Th u s when U [ I  - 5 , 1], q t [0 , q 0 ],

N [ v l  < - ~~‘U’ - q ’ - p.q < -  (q ’ + p .q)

prr vLiE- ~! ~~ ‘ > 0 , since U’ ~ 0 (see Lemma 2 .1 ) .  We choose q ( t )  = q 0e~~~
t ,

which resul ts  in N [ v J  K 0 when 1 - S < U < 1.

V 

By poss ib ly  further  reducing the size of p. and 5 and us ing  th,3

;a r r ~~ ~V r ~~ ~ts we may be assured that N [ v J  < 0  when~ v~~r ~ ~~ 
N

• U ~ ~.3 W1~ Li

-
‘ Now consider the intermediate values , S < U ~ I - 6. In this r azi g~

We know th at  U ’(z )  ? 13 for some p > 0. This fact was shown in Lenun~ ~~~. 1.

— 2 4 —
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Also , by the differe nt iabi l i ty of f , we have that f( U) - f ( U  - q) <

~or some K > 0 . Thus

N [ v }  < -f3~ ’ - q ’ + ~q

We now set

= (—q ’ + Kq)/ 13 = (p . + K)q/ 13 > 0 , with ~(0) = z *

( Specifically,

(4.4a) =

where 
/

( 4 . 4 b )  z2 = -q0(p . + K)/p .13, z1 = z* - z 2 .)

Thus ~(t) is increasing and approache s a finite l imit  as t -. ~~~ . Then

N [ v l  K 0 whenever v >  0 , arid by our condition on z~ , v will be a

subso lu t ion .  Thus

v (z , t) a~~(z , t) a U(z  - z 1
) - q( t )  = U(z  - z1) - q0e~~

t

V which completes the proof.

Lemma 4 .2 :  Under the assumptions of Theore m 3.1.  there exists a function

~ (c ) ,  de fined for small positi~y~ £ , such that u r n  ~i(c) = 0 , and such

thaLJj 0 < ~ 1 l~ (z )  - U(z - z 0
) I < c for some z0 , ~~~~~~~

lv (z ,t) - U(z - z0 ) I  <~~(c)

for all z and all t > 0 .

Proof: In the proof of Lemma 4 . 1, we may take q0 = 0(c) and

— z0 1 = 0(c) . Hence also l z 1— z0 1 = 0(c),  1z 2 — z0 1 = 0(c) ,  and

the conclusion follows from that  of the lemma.

~~~~~~~~~~ -
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Remark: Lemma 4. 2 already yields the stability of tr avelling fronts in

the C° norm . But Theorem 3.1 claims much more .

In the following develoçme nt , it will be necessary to have asymptotic

estimat es for the derivatives of v .

Lemma 4 . 3 :  Under the assumptions of Theorem 3. 1, there exist ppsitive

constants a , p., and C with o~ > l c i/ 2 , such that

V4~~ 5a) Ii - v( z , t) 1 , I v ( z , t) I , I v ( z , t) I , I vt (z , t) I <C(e~ 
a d i f  )Z~~~

_
~~t ), z >0 ;

- 
( 4 . 5 b )  I v ( z ,t) I , Iv (z ,t) I , lv (z ,t ) I , Iv

~
(z ,t ) I  < C(e 2 d )Z

+e p.t ) ,  z < 0

Proof: The wave front U(z )  approaches its l imits exponentially; this

V 

is easily seen by linearizing (2 .1 )  about the constant states U = 0 and

V 
- U = 1. In fact , thi s ~na1ysis shows that U(z) — 1 as z — 00 at the

approximate rate ~-o - 
~j~ 2 

- 4f’(l)]z), and so at an exponential

ra te faster than ei~~{(- ~~c - ~~ c o i l.  A simiLar analysis holds as z -

This , together with (4 .1) ,  establis hes (4.  5) for the undi fferentiated

f unction v. Since j f ( u ) I < k i u l  for u near 0 and 1(u) l < k ( 1 - u)

V for u near 1, we al so have that I f ( v(z , t )) I ~ C(e 2 CZ~~~ Z I  
+ e~~

t ) for

some C > 0. Fro m this and ( 1. 4) it follows that (4.  5) is satisfied for V .

The same estimates for v follow then from (1. 5), and (4 . 2a) yields
V zz

the m for v~. This completes the proof.

- Lemma 4 . 4 :  For each 5 > 0 , the “orbit ” set

• {v( , t) : t > 5 }

- 

considered as a subset  of C’~
_
~~, 00 ) ,  i s relatively compact.

— 26—
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Proof: We know from ( 1. 4-6) that v , v , and v are bounded and equtcont inuous
z zz

for t � S. Let {t’ } be a given sequence.  If there is a finite accumulat ion point

t~~ , then the ( u n i f o r m )  cont inu i ty  of v and its derivatives implies t ha t  v( , t)

~p~roaches the limit v(~ ,t )  “along a subsequence ” . So assume

~~~ i s  fl o i i~~. For any K > 0, let vK(z, t) be the restriction of v to

~~~V C set I z ~ K , t ~~5. By the Ar zela theorem , fo r each K = 1, 2 , . . . ,

i~~ :~~ is 3 subsequence 
~

t n K
} such thdt  the sequence {V K(z , t f l K

) }

cc~ verges i n C 2 [ -K , K J .  We may a lways , in fact , choose ~~ K+l~
tc: be a subs equence of {t K 1 We then take a ~iiagona 1 seque ncc ,

V t e n o~~u d by { t } , so that  {v(z , t )  converges uniformly on each

i nterval  [ - K , K J to a l imit  w( z) , the derivatives to order two convergin~

to those of w.

- 
Since v s a t i s f i e s  (4 .  5) ,  we pass to the l imi t  as t — 00 to obtuin

that  ~v s at i s t i e s  (4 .  5) with t =

Given any c > 0 , one may choose T and K so thdt

la k(v (z , t) — w( z )) I < e , k = 0, 1, 2 , for I z  I > K , t > T. This is

possible by Lemma 4. 3. One may also choose N so that tN 
> ?

and I d
k(v( z,t~) - w(z) ) l < e  for n > N , I z 1 <K. This proves that

lim v(z , t )  = w(z) in C2(-x ’ , 0 0) ,  and completes the proo f of the lemma.
f l — 0 0

Lemm aj :~~ Under the assumptions of Theorem 3. 1, there exists a value

z0 such that

lim Iv( z,t)  — U(z — z0) l  = 0
t — . 00

u ni formly in z .
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Proof: Let c > 0 be a number satisfying I c Ic < 2 p., where p. is

th e constant in Lemma 4. 3. Let w be a truncation of v in the

fol lowing sense :

w(z , t) = v(z , t ) for I z  I < et

V w(z , t) = 0 for z < — et — 1

w(z , t) = I for z 
~ Ct + 1 ,

V 

V
• and w satisfie s (4.  5). It is clear from (4. 5) that v m ay be smoothed

off  in this manner so that the truncation w also satisfies (4.  5).

We de fi ne the Lyapunov functional

V[w]  f e~~ [~~ w 2 
- F(w) + H(z )F( l ) ] dz ,

where H(z) is the Heaviside step function , and F(v) f  f (s)ds .  It

clearly converges , as do the integrals below , beca use of the truncation.

V In fact , V[w ]  is bounded independently of t. To see thi s , we use ( 4 . 5 )

V to estimate it as follows:
V 

ct+l
I V [w} I ~ C1 f  e ( e ~~~~

2
~ 

I Z  I ÷ 
_ 2~ t )~

—ct—I

~~ — 2 a I z J  I d l i — 2 p.t< C 2 j  (e + e  )dz .

V 

0

Since I c Ic - Z p. < 0 , the right side is bounded for all t ime.

-28-
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Setting V(t) V [w( , t ) ] ,  we have , by integration by parts ,

AV(t) 
— V(t + At) - V(t ) °° cz w ( z , t) ÷ w ( z , t + At) 

~~~ _ _ _ _ _

At = 
At 

00 \
’.~ 

2 ~~ j dz .

Passing to the limit as At — 0 and using the uniform (in t )  convergence

of the integral , we obtain that V(t) = exists , and

V(t )  ;
~~:

e°
~~~ zz + cw ÷ f(w))w

~
dz .

V Letting Q[w] j’ e~~ [w + cw + f(w) ] 2dz , we calcula:e

‘1(t) + Q[w](t)  = — fe~~ [w + cw + f ( w ) ] N [w ] d z

where N is given by (4 .2 a ) .  Since N E w ]  0 for I~ I ~ et and w

satisfies (4. 5),

et+l i 2
I~ ( t )  + Q[w] ( t )  I ~ C1 f  e~~~ (e 2

~~~~~~~~ + e~~
t) dz

< C 2(e
_ Z

~~
t 

+ e~~ 
I c I _ 2 p .)t)

Again , since e IC I - Z p. < 0 , we obtain

(4 .6 )  u r n  I v ( t )  + Q[w](t)J = 0 .
t — . 00

Since Q[wJ � 0, it follows in particular that lim sup V(t ) < 0 .  We

deduce the existence of a sequence { t }  with tn 
— 00 such that

(4.7) lim V(t ) = 0
- V

for otherwise lim sup ‘1(t) < 0 , implying that V(t) ~~~~-0 0, whereas we
t — . 00

V 

—2 9—
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know from above that V(t ) is bounded. Combining (4. 6) and (4.  7) ,

we obtain

(4 .8 )  u r n  Q [w l ( t ) = 0
fl -. 00

By Lemma 4. 4 , there is a subsequence of { t) , call it {t’ }, along

which v(~ , t ’ ), and hence w ( , t~ ), conve rges in the norm of C2(-00 , 00)

to a limit function v(z) .  From this and (4. 8), we obtain , for any finite

interval I , that

fe~~~(w + CW
z + f(w))~~~~~~dz _ f e cz (v zz 

+ cv + f (v)) 2
dz = 0

and so v + c~ + f(~~) 0.
zz z

We also have v(-oo ) = 0 , v(~~) = 1, and so by the uniqueness of

travelling fronts ( Corollary 2. 3), we have v(z) = U(z - z0 ) for some z0 .

This establishes that v(z , t )  approaches U(z - z0
) in the sense of

C2 as ~~~~~~

To finish the proof of Lemma 4. 5, we now merely apply Lemma 4. 2 ,

which indicates that once v is close to U(z - z0) for some t , it

V remains close for all later time .

• —30 -
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5. Proof of Theorem 3.1 (Conclusion)

Lemma 4. 5 asserts the convergence of v to a travelling front;

we now show that the rate is exponential. This conclusion can be obtained

l~ ,- appealin g directly to a theorem of Sattinger [ 2 2 J ,  the conditions of

,~~~ V h  are satisfied b~ virtue of Lemma 4 .5 .  We give , however , an

al te rna t ive  proo f which is in some ways simpler than Sattinger ’s ,

• though more limited in scope.

Recalling the definition of w(z , t) in the proof of Lemma 4. 5 , we set

h( z , t) w(z , t) - U(z - z 0 
— a ( t ) )

where z0 is the constant in that lemma , and a( t )  is chosen so that

for larg e t , h is orthogonal to e~~ U ’ , i. e . ,

(5.1)  f e ~~ h(z , t) U ’(z - z0 
- a(t))dz = 0

The existence of such an a , with a(oo ) = 0 , follows from the implicit

function theorem. In fact , by Lemma 4. 5 and estimates (4. 5) (which

also hold for w , U , and h) , the left side of (5 .1)  vanishes at

a = 0 , t = 00 • Furthermore its derivative with respect to a is

00 2 00

f e ~~ (U ’(z  — z0 
— a ) )  dz _ f e ~~ h(z , t) U ”(z — z0 

— a)dz

which is nonzero at a = 0, t 00 , because the right—hand integral

then vanishes. The implicit function theorem also yields that a is

- continuously di fferentiable .

—31—
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Theorem 3. I will be proved by showing

(I) Ih(z , t) I < C e  V t  and

(i i)  Ia ( t ) I < c e~~
t .

This will imply that w converge s exponentially to U(z - z0). But

we know from (4. 5) and the definition of w that

I v(z ,t) — w(z , t) I < Ce Vt

for some (possibly different)  positive v .  We shall thus obtain that v

converges exponentially to U(z - z0), as desired.

To establish ( i ) ,  we work with a diffusion equation for h. First

we note , by the de fi nition of w, that w = v for Iz I < c t , an d th a t

V ‘~V w and its derivaiives satisfy (4. 5). We therefore have that V

V w = VW + cw + f(w) + 0(r) V

t zz z

I~ I < ~ t , V

where r(z , t) = ~~~~~~~~~~~~~~~~~~~~~ et < I z I < et + 1 , V

L 0 , I z I > e t + i .
Therefore

h = w + a ’U = w + cw + 1(w) - U” — cU’ — f (U)  + a ’U ’ + 0(r)t t zz z

h + ch + f ’(U)h  + a ’U ’ + 0(h 2 ) + 0(r)

—~ czSettinq h -= e y, we have

V -; . 2) y = y - ~~~~ c2 
- f ’(U) }y + a’e~~

2U ’ + O(hy) + O(e ~~~~r) .

The linear operator L given by

— 3 2 —

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _-‘“ -~i ~~—~-
•  

V



~~~$I1PJLJ~~LL V I~~~~~~ ii 
V~~~~~~~V.~~V_ 

~~~~~ ~~~~~~ - JTJ~ V. , W ~~~~~ jV V:~~~~~~~~~~~~~~~~~~~~~ 

— ~~~~~ V •V~~V_  V._ , ~~~~~ V
~W~~

V.
~~~

Ly -y + {-
~~

• c - f’(U) }y

with appropriate domain in £2(.~Q0 , oo ), is self-adj oint with a continuous 
V

spectrum to the right of Min{~ c2 
- f ’( O) ,  ~ c2 

- f ’( l )} , which i s

strictly positive, and a discrete spectrum to the left. Furthermore, we

know by differentiating (2.1)  that the eigenvalue 0 lies in this discrete

spectrum with eigenfunction e 2 cz U , , and since this eigenfunction is

of constant sign , 0 mu st be simple and the least eigenvalue , with

all other eigenvalues strictly positive . Let II II denote the norm in

We know that e 2~~~h = y lies in this space .

Multiplying (5.  2) by y and integrating over (-oo , 0 0) ,  we obtain , by

virtue of ( 5 .  1), that

~~ 1l y 11 2 
= (-Ly, y) ÷ 0( ~J~~~y~J

2 ) + 0( IIe~~ rII Il y lI) .

Now since y is orthogonal to the eigenfunction e~~~ U corresponding

to the zero eigenvalue of L, th e right side will in turn be

< -M II y II 2 
+ C(sup l h(z,tt II y 1I 2 

+ ~~~~~~ ~~~~~~~~~~~~~

with M > 0 independent of t. Since h — 0 uniformly as t -. 00 and

> Ic Ic , we have , fi nally, that

I d  i 2  M 2 — Kty i  < -
~~~~ 

y + O(e

for large enough t and some K >  0. Integration of this inequality shows

that V

— v t
( 5 . 3 ) y < C e

for some v > 0

— 3 3 —
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At this point we need an interpolation lemma. Though somewhat

standard , its prooi will be given later for completeness.

j~~~ma 5.1: Let f € C1(]R), a nd den ote f 0 = lu ll 
~~

, ~1 
= I 1 f I1 1. Then

~~ ~~~~~ 
f~/3 

— 0 0  

f 2 (~ )d~ )~’~

We apply this to the function y( , t ) .  Since II y( , t) 1 1
C

is bounded independently of t , es t imate (5 .  3), and the above lemma , imply V

(
~ . 4) II y(~ , t) II 0 = O(e~~

t ) .
C

For each 6 > 0 , we have from (5.4) and the definition of y that

Ih ( z , t ) I  < C e ( I 6
~~~

t

for I z I < st.  Let 6 be such that ~Ic Is - v < 0 .  For I z I > St , however,

V (4 .  5) yields that

( 5 . 5 )  I h ( z , t) I <Ce Vt
, “ > 0

• Therefore (5. 5) holds , in fact , for all z and all t > 0.

The proof of Theorem 3. 1 will be complete if we can merely show that

I a ( t )  I = O(e
_ V t

)

For this purpose we mul t ip ly  ( 5 . 2 )  by e 2 cz UI and integrate over (_ 0 0 , ~~~ )

( the integrals converging because of the asymptotic behavior of U’) .  Thus

( s .  ~
) (e2~~ UI, ~~ = _ (e 2~~~U t , Ly) + a ’(e~~~U ’ , U’)

+ 0( (U’ , y
2 )) ÷ 0( Ie 2 cz r II  II e~~~u ’ II ) .

Differentiating

— 3 4—
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~cz(e U ’ ,y )  = 0

we have V

(e~ 
cz~~, 

) = a ’(e 2 ~~~~ y)

and the scalar product on the right is seen to decay exponentially by use of

the Ca uchy-Schwarz inequality and ( 5 .  3). Also

(e2 ~~~~ Ly) = (L( e 2 CZ U ,)  y) = 0

and the remainder terms in (5.6) also decay exponentially. We can therefore

conclude from ( 5 . 6 )  that

— vt
a ’ O(e ) ,

V 

and so a = O(e Vt ). This completes the proof of Theorem 3.1.

Proof of Lemma 5.1: Given 5 > 0 , let x0 be such that I f ( x 0 ) I a f 0 
- S.

There is no loss of generality in supposing f(x 0 ) > 0 , so that

f(x 0
) a f 0 

— S. Then

f(x) = f(x 0) + 
X 

f ’(x) dx a f0 
- 6 - Ix  - x0 I f 1,

x0

for I x  - x0 I < ( f 0 
- 6)/f

1 
1. Thus

x + 1

f:
f
2
dxa

~~~, 
f 2d > f  (f 0 

- - Ix - x0 11 1)
2dx = ~~(f 0 

- o) 3
/f 1

$

Letting ~ — 0, we obtain the assertion of the lemma .

— 3 5—
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6 • Proofs of Theorems 3 . 2  and 3. 3

The follow ing is the basic lemma we shall ne~ d for Theore m 3 .2 .

Lemma 6 . 1 :  Under  the hypotheses of Theorem 3 . 2 .  there exist constants

z 1, z 2 , q 0 and p. (~~~~~j~~~~~ jwo p o s i t i v e )  such that  V

( 6 . 1 )  U( x - ct - z 1) + U(-x - ct - z1) - 1 - q0
~~~ t 

< u ( x , t)

< U( x - ct - z 2 ) + U(-x - ct - z 2 ) - 1 + q~~~~ t

Proof: F irs t , note that (3 .  3)
V
implies  c < 0 .  The right-hand inequali ty

of ( 6.1) follows from the proof of Lemma 4.1. More precisely, that proof
p.0t

shows that  u( x , t) < U(x - ct - z2 ) + q1e for some z 2, q1 and p.0 .

The same argument  applied to u(-x , t) reveals as well that
• p 0t

u(x,t)~~U(-x - ct-z~)+q~e . Since decreasing z 2 and z~ and increasi ng q1

-

. and q~ strengthens the inequal i ty ,  we m ay assume z 2 z~ <0 , q 1 q1. Hence

— p .0 t
( 6 .2 )  u(x , t) < Min[ U(x - ct - z 2 ), U(-x - ct - z 2 ) J  + q

1e

If x > 0, th en the monotonicity of U and its exçonentia l rate of

convergence to its l imits at ± 0 0  imply

— v ! c t + z  I
• 1 - U~x - ct - z 2 ) < 1 - U(-ct  - z )  < K e  2

for some positive constants  v and K. Furthermore

U(x — ct — z ) ) ~ U ( — x  - Ct — z 2 ) for x > 0 , and so from (6 .  2) ,

• -p .0 t
u(x , t) K U(-x - ct - z 2

) + q
1e

—~ Ict+~2 I
< U(-x - Ct - z 2 ) + U(x - ct - z 2

) - I + q 1e + Ke

-I L 0 t
V 

< U(-x  - C t  — z 2
) + U(x — ct - z 2

) - 1 + q 0e

— 3 6—
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if v~e choose q0 > q1 and further require p.0 to be small  enough and

(-z 2 ) la rge enough. A similar argument may be used for the range x < 0 .

We shall now prove the left —hand inequality of (6 .1 ) .  Let

j~(x , t) = U~ (x , t ) + U ( x , t) — 1 — q(t)

where = x - ct — ~(t ) ,  ~ = -x — ct - ~(t) ,  U~ (x , t) = U(ç) ,  for

some q(t) > 0 and ~(t )  < 0 (with ~‘(t ) > 0) to be determined. Then

Nu~~~u - u  - f(u )
— —t —xx — V

V -~~‘( t ) ( U ’( ~~~) + U ’(~~~)) - (U ” (~~÷
) + U” (~~~)) - c(U ’ (ç) + U ’(~~~)) - q ’(t )

- f (U ~ + U - I - q)

Since U’ + cU’ + f (U )  0 , we have

(6 .  3) Nu = -~~‘( t ) (U ’ R ~ ) + U ’(~~~)) + f ( U
÷

) + f (U ) - flU + U - 1 - q) - q ’(t )

Let q~ and q 2 be such that

and let 5 be as in the proof of Lemma 4 .1. As in that proof , we then

see that for some p.1 
> 0 ,

f (U ) - f (U - (1 - U~ + q)) ~ p.1( l - U + q)

for ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Thj 5 latter ineqU ality wil l be

guaranteed if 0 < q  < q ~ , x > 0 , and (— a ) is suf f ic ien t ly  large , for then

I - U~ + q < 1  - u(-~~) + q~ < q ~ + Ke~~
’ < q 2 .

We finally note that u ’(~~~) > 0 and f(U+) 
< b(l - U) for some b > 0.

— 3 7 —
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Therefore we have from ( 6 . 3 )  that  for I - S < U 1, 0 q ~~~

x a 0 , (-a ) s ut t i c i e n t ly  large , and ~~‘ > 0 ,

N~ < -  p.1( l  - U~ + q) + b( l  - U) - q ’ = (b - 
p.1)( l  - U )  - - q ’

<- bke

p.2
t

V Settin g q = q~ e for 0 < p.2 < p.1. we have for the above range ,

Nu < bK e I 4
~~

t I  - -

provided p.2 < vc and (-c) is suff ic ient ly  large. 
V

A similar arg ument  holds for 0 < U ~ 6 , 0 < q < %,  x a 0 , pmvided

that u a 0. Finally for S < U < I - 6 , x a 0 , we ha ve

U~~ + U ’ > p > 0 ,

f ( U ) - f ( U~~+ U - l - q ) < C ( l - U ~~ + q ) ,

f ( U ~ ) < b( 1 - U) < bKe~~~~~~~
t J

so that from (6.  3),

Nu < - p ~~’( t )  + (C + b)Ke~~ 
I~ +ct I + (C + p.2)q~e 

2

V 

We now choose ~(t) so that

-p . t
_p~~( t ) + ( C + b ) K e V C t + ( c + p. )q i e 2 = 0 ,

with ~(o) = suff icient ly large and negative . Then fro m the above we

obtai n N u <  0 for all (x , t) with x a  0 , u(x , t) > 0 .  A similar argument

shows that Nu < 0  for x < 0  as well .

—38-  V
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Now Max[ 0 , u(x , t ) J  will  be a subsolution if we can show that V

q~(x) a u(x , 0).  But

~(x , 0) = U(x - 
~~~~~

) + U( -x - 
~~~~~

) - 1 - q~ < I  - q~ < a 1 + ~

for I x I K L , and

~ (x , 0) < 0  <~~(x)

for l x i  M , for some M depending There fore if LaM ,

V we sha l l  have ~(x , 0) < q ( x )  for all x.

V V With  th i s  condit ion on L , it now follows that

u(x , t) �~~ x , t) a U( x - ct - 
~~ (~~~~

)) + U( -x - ct - 
~~(~~~~

)) - I - q~~~ e

We set z
1 

= 
~~(~~~~) and p. Min[ p 2 ,p .0 J ,  and this  completes the pro of.

Lemma 6. 2: Let f and q’ s a t i s f y  the hypotheses of Theorem 3 .2 .  There

exist  functions ~(c) arid T(c) ,  defined for small positive c 
~~~~~~~~

s a t i s f y i ng lim ~ (c)  = 0 , such tha~J.Vf
d O

( 6 . 4 )  Iu(x,t0) 
- U(x - ct0 

- x0)I < C

for som e x0, some to > T(c) ,  and all x < 0 , 
~~~~~~~~~

- I u(x,t) - U(x - ct - x0 ) I  < w( c)

for all t > t 0, x < 0.

Proof: Consider the subsolution ~ (z , t) used in the proof of Lemma 4. 1.

We express it in the original coordinate s as

(6.  s) ~~(x , t) ~ (x - ct , t) = U(x - ct - ~(t))  - q~~
_
~ t

— 3 9—

~~~~~~~ -~- ~~~~~~~~~~~~~ :~~~~

-
V.V.-~~ ~ ~~~~~~~~~~~~ -

_

-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4



r
~~~~~~~~~~

V V _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

V wh ere ~ + ~~~~~~p.t It was shown that i t  p. is su f f i c i en t l y  small
V (posit ive ) and ~ = A q for a certain constant  A depending only2 p. O p.

on p. (see (4 . 4)) , then for a rb i t ra ry  and q0,

N u E u  - u  - f L u ) < 0 .- -t -xx -

We shall now use u (with appropriate 
~l’ 

q0 and p .) as a

V compa rison function in the region x < 0 , t > t0 . if we ca n show that

u <  u on the boundary ~x = 0)  U {t = t0
) , then it will follow that

u(x , t) < u ( x , t) in the quarter-plane under consideration .

First , consider the portion {t = t0 } of the boundary. Fro m ( 6 . 4 )

we have

- 
u(x , t0) ~~~ U( x - ct0 

- x0 ) - c

• p.t0 p.t 0If we now set q 0 = ce , = e A e  and 
~l = x0 

- cA
p.~ then

u(x , t0 ) = U( x - ct0 
- x0

) - c ~ u(x , t0 ).

- 
Next, consider the portion {x = 0) .  From (6.1)  and the exponential

[ approach of U(z) to its limits , we have , for some v ,

• V u(0 , t) a 2U( -c t  - z1) - 1 - ~~~~~ = 1 - q i~~~~t - 2( 1 - U(-ct - z
1

))

V - p .’t — vl c l t> 1 - q ~ e - M 1e

the primes added to dist inguish these constants from the q 0 and p. in

( 6. 5) . On the other hand ,’- fo r t � to,
• -p .( t t0 )

u(0 , t) = U( -ct - ~(t ) )  - ~~~~~ < 1  - ~~~~~ = 1 - ce

V 
— 4 0 —  
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- 
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Thus

—p .(t—t )

(6. 6) u(0 , t) — ~ (0 ,t) a c e  0 
— M 1e~~

’ C t 
— q i~~~~ t

The constant p. can be taken as small as desired. We choose

it so that 0 < p. < p.’, p. < V I d .  Then from ( 6 . 6 ) ,

-p.(t-U)
u(0 , t) - u( 0, t) a ee — (M 1 + 

p.t

V 
- 

— p .t0 —p . ( t— t 0 )
(c — (M 1 + q~ )e )e > 0

for sufficiently large t0 (depending on c).

V 
This completes the comparison argument , and we conclude that

- 

for t a t 0, x < 0 , 
-

p .(t t 0)
V - V u(x , t) a ~(x , t) = U(x — ct — ~(t))  — ce

a U(x — c t - x 0) - ~~(c) .

- :  A similar type of argument can be used to show that
- 

u(x , t) ~ U(x - ct - x0 ) + ~(c) ,  and this complete s the proof of the lemma.

Proof of Theorem 3 . 2 :  We define the “left truncation ”

• ( u(x , t ) ,  x < 0 ,
u1 (x , t) =

V 
— ~(x)(l  — u(x , t ) ) ,  x a 0

where ~(x) E C
00

(— oo , o o) ,  ~~~(x) 1 for x < 0, t~(x) E 0 for x a 1,

• and v,(z , t) = u 1(x , t) = u1(z  + ct , t ) .

Then with the aid of Lemma 6. 1 and essentially the same proof as in

Lemma 4. 3 , we conclude that v 1 sat isf ies  (4 .  5) ,  and hence (as in

Lemma 4 .4 )  the set {v1(~ , t), t a  6) is r elatively compact in C2 (-00 ,~~).

-41-

V ~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V~~~~~ -~~~~~~~~~~~ P~~~- . :~~ ~r ~~ VV - --



Exactly as in Lemma 4. 5 , we next establish that

lim I v 1(z , t) — U(z — x0
) I = 0

~

for some x0, uniformly in z .

It is now tr ivial  to extend the proof in § 5 to show that

-w tv1(z , t) — U( z - x0 ) < Ke

• whi ch establishes (3. 5a).

The symmetrical argument establishe s (3.  Sb), completing the

proof of Theorem 3 . 2 .

The following lemmas lead to the proo f of Theorem 3. 3.

Lem ma 6. 3: Under the h ypotheses of Theorem 3. 3, the following holds

for some n umbe r s a1, a 2, q0 and p. (the last two positiy~ ):

( 6 . 7 )  U 1(x - c1t 
- a 1) - q~~

_
~t 

~ u(x,t) ~~ U 2(x - c2t - a2 ) + q~~
_
~t

Proof: Taking suff ic ient ly  the le ft-hand inequal i ty ,  we observe that it

follows at once from the left-hand inequality of Lemma 4. 1 applied to the

u-interval (u 1, u 2 ).

V 
V For simplicity , we assume from now on that c1 < 0 < c

2
. If thi s

V 

~ 5 not the ca se , we may use a moving coordinate frame to reduce the

problem to one for which it is so.

As in the proof of Theorem 3. 2 above , we define the le ft truncation

( u(x ,t ) ,  x < 0 ,
u 1 (x , t) =

Lu z 
— ~(x) (u 2 

— u(x , t)), x a 0

and v 1(z , t) u 1(x , t) = u 1(z + c1t , t), where z = x — c1t .

V —42—
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Lemma 6. 4: For some numbers a1, a 3, t0, q0 and p. (the last three

positive),

(6 .8 )  U 1(z - a1) - q e Fit < v 1(z ,t) < U 1(z - a 3) + q0
~~~~t

for t a t 0 .

Proof: The left inequality follows directly from Lemma 6. 3, and so we prove

V only the right one. Let t~ be such that lim sup q’(x) < 11 < a
1
. For

X~~~-00

some consta nts X0, -y , and k , to be deter mined below , let

( ~~~ ,

V( x) = (  2 x a X 0 ,

and u(x , t) = Min[ u 3, V( x + k t ) ] .  First , it is clear that V a ~~ for

large enough negative X0 . We so choose X0 .

V For V = 1, we have u = i-~ and Nu = - f( 1) > 0 , since a 1 is the fi rst

zero of f greater than u1.

For i~ < V  < u 3, we have

Nu = kV’ — V ” — f(V) 2k~~~— 2 y f(V) ,

V where r~ = x + kt - X0 . But

2
1( V) < f(~ ) + m(V — i) ( for V a 1, some m > 0) = 1(1) + my ~

V 

V

’ so that

N u a - f ( 1 ) - 2 ~~ + 2 k y~~- m ~~~
2 .

• We first choose y so small that -f(i)  - 2~ > 0 , then k so large that

- 2k y~, - mv~,2 
a 0 for ~ such that V is in the indicated range .

— 43—
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This shows that u is a supersolution , and so u < U .  ln particular ,

it follows that at each val ue of t > 0 ,

(6 .9 )  u(x , t ) < i ~ < a1, for (— x) large enough .

-~j~ Iz I
Next we observe that since U 2 ( z ) < u 2 + Ke for z ~ 0 ,

the right-hand inequality in ( 6 . 7 )  implies

-w t
(6.10) u(x , t) ~ u 2 + Ke 2

for x < l .

We now consider the function

u(x , t) = U
1(x — c1t + ~(t)~ + q0e

in the domain x < I , t � t0 . With appropriately chosen ~~, q0, p.2,

and t0, it will be a supersolut ion.

First of all , from the proof in Lemma 4.1 , where a similar comparison

V function was used , we k now th at N u a 0 , provided q0 and p.2 are

sufficiently small , and ~~‘ = -~ 1e for some appropriate 
~~~~~

We sh all show that u(x , t) a u(x , t) for t = t0 and/or x = 1.
—p .2 t0

First , with t0 to be speci fied later , we choose q0 so that q0e = r l .

Taking the constants K and from (6.  10), we note that

—w 2t p.2 (t 0 t)
- 

~~~ (6. 11) u 2 + Ke < U 1(l — c1
t) + ie

V for sufficiently large t0, t a t0, and sufficiently small p.2, by virtue

V 
o f the f act s that  c1 

< 0 and U 1(z) — u 2 exponentially as z -. oo~ We

— 4 4 —
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choose t0 and p.2 so that (6.11) holds for t a t 0, and also so that

the last term in (6. 10) satisfies

-w t
(6.12) Ke 2 0 <

Next , we choose X so large that ( from (6. 9)) u(x , t0 ) ~ ii

for x ~ -X , and ~(t 0) so large that

• (6.13) U1(x — c1t0 ÷ ~(t 0)) + q0e = U1(x - c1t0 + ~(t 0)) + 1 a u 2 + Ke

V for x a -X. This is possible , by virtue of (6. 12) and the fact that

U1
(oo ) = u 2 .

For t = to, (6.10) and (6 .13) yield that u(x , t0 ) ~ ~(x , t0). For

x = 1, (6.10), (6.11), and the fact that ~(t) > 0 imply u( 1, t) ~ u(l , t)

for t a t0. By the maximum principle , we conclude that
-p . t

u(x , t) < u(x , t)~ z U 1(x - c1t 
— a 3) + q0e ~ for all x < l , t a o .  Since

u(x , t) = v~ (x - c1t , t) for x ~ 0, thi s establishes the right side of (6 .8 )

for z ~~ -c1t = Ic1 I t .  But for small p. and large t ,

U1(z - a 3) + q e I~Lt > u 2 a v1(z , t) for z > I c 1 It

V and so (6.  8) can be guaranteed by (if necessary) further reducing p. and

increasing t0 . This complete s the proof of the lemma.

Proof of Theorem 3. 3: With inequality (6 .8 )  at hand , we may prove , as in

the proof of Theorem 3.1, that for some x1,

u r n  1v 1(z ,t) - U1(z - x1) I  = 0 ,

t — ~~~oo

uniformly in z. And again using the argument In § 5, we find that
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I v 1(z , t) — U1(z — x1
) I ~ Ke~~

t

and hence

(6.14 ) I u (x , t) - U 1(x - c1t 
- x

1
)) < K e ~~

t

for x < 0 .  A similar argument using the right truncation yields

( 6 . J 5 )  Iu (x , t) - U 2 (x - c2t - x2 ) I  < K e Wt

for x a 0. Combining (6 .14) and (6.15) , we obtain (3. 7),  completing

the proof.

-46— 



V-V. 
- -  - ~~I~~~~~

V . V V  
_

~~~~~ V~~~~~~~~~~~~~~~~ :TT: ::~~~~ VV i ~~~~~~~~~~~~~ 
V V V  V. V V.V-tfVV-VV- 

V.

REFERENCES

1. D. G. Aronson and H. F. Weinberger , Nonlinear diffusion in population

genetics , combustio n , and nerve propagation , in Partial Differential

Equations and Related Topics, ed. J .  A. Goldstein. Lecture

Notes in Mathematics No. 446 , Springer , New York (1975),  5-4 9.

2. D. G. Aronson and H. F. Weinberger , Multidimensional nonlinear 
V

diffusio ns arising in population genetics , Adv. in Math . ,  to appea r.

3. G. I. Barenblatt and Ya. B. Zel’do~~c, Intermediate asymptotics in

mathematical physics , Usp. Mat . Nauk 26 (1971) ,  1 1 5 — 1 2 9;

Russian Math. Surveys ~~~( l 97 1) ,  4 5— 61. V

• 4. K . -N . Chueh , On the asymptotic behavior of solutions of semilinear

V - parabolic partial differential equations , Ph. D. Thesis , University

of Wisconsin , 1975.

V 
V 

5. H. Cohen , Nonli near di ffusion problems , in Studies in Applied

Mathematics , ed. A. H. Taub , Studies in Mathematics No. 7 , Math .

Assoc . of America and Prentice—Hall (1971),  27- 64.

6. P. C. Fife , Pattern fo rmation in reacting and diffusing systems , J .

Chem. Phys . ~~~( l976) ,  5 54— 5 64.

7. P. C. Fife , Singular perturbation and wave front techniques in reaction-

diffusion problems, Proc . AMS-SIAM Sym posium on Asymptotic Methods

and Singular Perturbations , New York , 1976. V

-47-

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ V :

1~~~~~~~~~~~~~ .::~~~~~~~~~ 
: - V



8. P. C. F i fe  and J . B. McLeod , The app roach of solutions of nonline ar

d i f f u s i o n  equat ions  to t r avel l ing  wave solut ions , Bul l .  Amer. Math .

Soc. S 1 ( 1 V~7 5) , 10 7 5 — 1 0 7 8 .

9. R. A . Fisher , The advance of advantageous  genes , Ann . of Eu g er i~~~

7 ( 1 937) , 3 5 5 — 3 ( ~9.

10. A. Friedman , Partial Different ia l  Equations of Parabolic Type , Prentice-

Hall , Englewood Cliff s , N. J . ( 1 9 6 4 ) .

11. I . M . Gelfand , Some problems in the theory of quasi l inear  equations ,

Usp . Mat .  Nauk ( N . S . )  1-4 (1 959 ) ,  87— 158;  A. M. S. Translations (~ f

2 9 ( 19 6 3 ) ,  2 9 5 — 3 8 1 .  V

I

12. F. Hoppensteadt , Mathem~ tica1 Theories of Popula~~pns: Demographics ,

Genetics~~ and Epidemics ,  CBMS-NSF Regional Conference Series
V 

in Applied M athematics , Society for Industrial and Applied Mathematics ,

Philadelphia , 1975.

1 3. Y. Kametaka , On the nonlinear diffusion equation of Kolmogorov-

Petrovskir — P i skunov type , Osaka J. Math.  11( 1976), 11-66.

14. Ya. I. Kane! ’ , On the s tabil izat ion of solutions of the Cauchy problem

for equ ations arising in the theory of combustion , Mat. Sbornik 5j

V (1962) ,  2 4 5 — 2 8 8 .  See also DokI . Akad. Nauk SSSR 132 (1960 ) ,  
V

2 68—27 1 ~~= Soviet Math.  DokI . 1 (196 0) ,  5 33 — 536)  a nd Dokl. Akad . Nauk

SSSRj .~~ ( 1 9 6 1 ) ,  277—280 ( =  Soviet Math.  Dokl. ~~( 19 6 1) ,  4 8 — S I ).

15. Ya. I . Kane! ’ , On the s tabi l izat ion of solutions of the equations of the

theory of c om b u st io n  wi th  in i t ia l  data of compact support , Mat.

Sbo rnik 65 ( 1 ’~64) , 3 98—413 .
— 

-48 -

~~~~ L~~~~~ -~~~- :V 
~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V.

16. A. N. Kolmogorov , I. G. Petrovskii , and N. S. Piskunov , A st u dy

of the eq uation of diffusion with increase in the quant i ty  of matter ,

and its application to a biolog ical problem , Bj ul . Moskovskogo Gos.

Univ. 1 :7(1937) ,  1—2 6.

17. H. P. McKean , Application of Brownian motion to the equation of

Kolmogorov- Petrovskii-Piskuno v , Comm . Pure Appi. Math. ~~ ( 1 975),

323-331.

18. E. W. Mon troll , Nonlinear rate processes , especially those involving

competitive processes, in Statistical Mechanics, ed. Rice , Freed ,

and Light, Univ. of Chicago Press (197 2),  69-89 .

19. J .  Nagumo , S. Arimoto, and S. Yoshiza siva , An active pulse transmission

‘

V 
line simulating nerve axon, Proc. Inst. Radio Eng . 50 (1962) ,

20 61 — 2070 .

20. M. H. Protter and H. F. Weinberger, Maximum Principles in

Di fferential Equations , Prentice—Hall , Engle wood Cliffs , N. J. (1967 ) .

21. F. Rothe , Uber das asymptotische Verhalten der L~ sungen einer

nichtlinearen parabolischen Differentialgleichung aus der Populations-

g enetik , Ph. D. Dissertation , University of Ttibingen , 1975.

22. D. H. Sattinger , Weighted norms for the stability of travelling waves ,

preprint.

• 23. A. N. Stokes , On two types of moving front in quasil inear diffusion ,

• Math . Biosciences ~j  (1976),  307—315 .

49

VV

V V V V V V:~~. V V~~ 

V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• V~~

V . V V
:I~~

•
A • V V V V V V V V V V V • V V V V V V V V V V V V . V VVV V~~~~~~~~~~~~~~



~~~~~~~~ ,~~ 1~5 ~~iTT ,I,s PA , . t  ($h..i ~~•. r i.’.,) — -

r~r~nr~r - —  r~’~v~ I t t g ~~ rr A r.A~J D AG~ 
RItAD IN~TflUCT1ONS

RCU V(~ I IJt .’~~ U,.tLI~ I ~~ ~ ~~~~~ DF.FORI COMP .I~Z INo I OHM 
-

fr~~~t P O NT  sp4 ~ .~~~ 
2. OOVt  ACC E3$I O~ ’P~D L fi1ClPI~ NT~s E~~TAL~IQ ~~~~~~~~~

( - ~i ” ’  - I
I 7 3 t ~ 

- 
• V V

~~~ 
L_-t rU .r ~~~~~~~~~ &4EHIoo co v c n Eo

,‘ THE APPROAC H OF SOLUTIONS OF NONLINEA R I ~ umrn ary )~‘ep~ t.~. no specific
DIFFUSIO N EQUATIONS TO TRAVELLING FRONT ~ re~ ?5Yrflhq p~r~od 

- 
V

SOLUTION S ‘ PCfl FORMING ORG. RCPO RT NUMBER

V V

, 7 A~)TRO H( .)  6~ CONT ISACT OR G R A N T  NUMUIR(.)

/ ~L- ~~~~~~~~~~~75-C-j ~~~~~ 
~~~~ _ V _~~~~~~.V _~~~— V ( 

~~~~~~~~~~~~~~~~~~~~~ f_ M PS-74-~ 6835~~ ôl
V5F 4~,~~ 4 G A t ~t~~A T I ~~t~ NA M E  At ID A OOM ESS 10. PROG RA M EL EME NT . Pf l OJ ECT TA iV ~~~~

V-Vl V

V 1 V i J t h ~~mat lc s  Research Center;- University of 
AR E A a wO RK U N I T  N U M V E R S

~Glu Walnu t  Street Wisconsin 1 ( Applied Analysi s)

~‘ dI son Wiscons In  53706 V

S H C ) N T RO L L I W G  OFF” CE PlANE AND ADo nEc~,...~~~ 
V V~ V- 12 REPORT ~~~~~~~~~~~~~~

V /  
r /  / March 1-977

See Item 18 below . J V~~~~ 
I. ~V V  ~~3V.~ NU~t~~~~~~~i~~~~ES -~~~

____________ — 

1 49
rtUloNIToRING

~~~
EP4cv NAME A A Ob RESS( l f  dllier.n f (!OD1 Cot~troIlin~ (.IIulc.) 15. SECURITY CLASS. (o( (Aft :opori)

/ is,) ,~j  ~ cr1 — 
— j  

1
, 

‘
~~~~~ UNCLASSIFIED

• .~~~~~~~~ / ~~V-_ ._~~~~ V~~* V V - _ V  ~~~ • V_ V V V V~~~ V~~~• V •  V 
~~~~~ DECLA SS I r I CA T IO N/OOW NGRAD,N G I- V V • SCHEDULE

V V 
/ I~~~~~DI S T R , bUT I O ’ 4  S T A T E M E NT  (of t h i s  Report)

V 
V Approved for public release: distribution unlimited.

11. DISTR IBUTI ON S T A T E M E N T  (of h, abstract .n*.r.d in Block 20. Ii dIi1.r ~~it from R.p ort)

Ia. SUPPL EMEN TA RY NOTES 
• 

-

U. S. Army Research Office National .Science Foundation Science Research V

V P. 0. Box 12211 Washington, D. C. Council
V Research Triangle Park 20550 London , England

North Carolina 27709 • V V V

‘9. KEY WORDS (Cont inua on r.v.ra. .14. Ii n.c...ar y id tdsntify by block ni ib.r)

Fisher ’s equation wave fronts
nonlinear parabolic equations asymptotic behavior -

travelling waves V~~~V~ • - . it
travelling fronts ~~~~~~ 

V - 

~~

••

~
20. A B S T R A C T  (Cenhln u• on rarses. .14. II nic...ary wd IdSrillly by block nu.i b.r)

The paper is concerned with the asymptotic behavior as t of solutions
u(x , t) of u

~ — u — f (u)  = 0 (x (— or , xs))  in th e case f(O )  = 1( 1) = 0, V- V

f ’( O ) 0 , f ’( l)  < 0 .  Commonly, a travelling front solution u U(x - C t ),  
/ ~,

/

V U ( — ~~) = 0 , U~~~) 1, e~,x ists . The following types of global stabili ty results  for
f ronts and vari o is combinations of th~~ are given:

V .— — -I

~~~~~~ 1473 ~o , TION °~ * NOV ~~ is ODSO LCT C . 

- 
UNCI SIFIED 

- - 

/ 

~
V

•

~ ~1 V I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V~~~~~~~ V V  V V A



20. ABSTRACT - ConVd .

1 . Let u(x,0) u
0
(x) satisfy 0 <u 0

< l . Let a_ u r n  sup u0(x),

V a + 
= l im t n t  u0

(x) . Then u approache s a t rans la te  of U un i fo rmly  in
x

x and exponent ia l ly  in t ime , if a is not too far  from 0 , and a +
not too far from I.

2.  Suppose  f  f (u )du  > 0. II a and a
~ 

are not too far from
0

0 , but u
0 

exceeds a certa in threshhold level for a suf f ic ien t ly  large

x—interval, then u approaches a pair of diverging travelling fronts .

V 3. Under certain circumstances , u approaches a stacked

combination of wave fronts , with dif fer ing ranges.
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